dsdada

Preventing Delays During Your PCB Fabrication

Written by Admin on . Posted in PCB, PCB Assembly and component, PCB Design, PCB Fabrication, PCB Manufacturing

Delays in your printed circuit board fabrication can be costly and time-consuming.  In today’s world, they are a commodity that there is never enough of.  Believe it or not, there are steps you can take to avoid those dreaded delays during your fabrication process.  We are going to discuss how you can take an active role in ensuring your printed circuit board fabrication runs smoothly and on schedule.

Communication

Follow up is an extremely important factor during the fabrication process.  Placing your project at the top of your “things to do list” is a must.  If you are communicating with your fabricator through email, or phone, you must be sure to answer any messages left in a timely manner.  Not answering them promptly can cause an interruption of the manufacturing, especially if a question is being asked or your guidance is needed.

Identify Long Lead-Time Parts

You may not realize it, however, some of the parts that are necessary for your project may take up to six months or longer to receive.  Working closely with your manufacturer as soon as you can will help them determine what they order and how quickly they can get it.  Printed circuit board manufacturing is not like shopping at your favorite grocery store, they will not always have the products in stock.

Also Read: Uses of Printed Circuit Board Components & Technology

Correct Documentation

You should always keep your product documentation up to date with the correct information.  Speaking with the manufacturer candidly to find out what their specific requirements are is the best way to understand what they need, this way there will not be any confusion.  This will also help eliminate any unnecessary mistakes that will inevitably cause delays in the manufacturing process.

Product Demand Information

Never wait until you are out of (or almost out of) your product.  This only increases stress, time, and cost.  The cost of shipping overnight is much higher than normal shipping methods.  Come up with a way to order your supplies before you run out to avoid additional cost, stress, and time.

Consider a Domestic Manufacturer

Although the cost may be less expensive, you may end up paying a higher cost in the end.  You want to consider the following;

  • Shipping prices will be higher with overseas manufacturers
  • Communication may become more difficult due to time differences
  • The difference in time may also result in the delay of delivery

Find a Manufacturer Who Can Handle the Entire

Manufacturing Process

A manufacturer who can provide their services from start to finish is the most beneficial option for your project.  This saves time because it cuts down on the amount of time it takes to get from one manufacturer to another, be worked on, and then shipped back to the original fabricator.  It makes smarter business sense to keep your product in one place from beginning to end so it can be shipped directly to you.  It also will stop the “blame game” if something is defective you know who is responsible.

Also Read: PCB Fabrication Making a World of Possibilities a Realty

 

 

pcb

New High-Density, Direct Connection for PCB’s

Written by Admin on . Posted in PCB Design, PCB Manufacturing

A new high-density direct connection for printed circuit boards has been placed on the market by Phoenix Contact.  Dubbed the SDDC 1.5 connection system it offers four to thirty-two conductors using “SKEDD” plug-ins.  Using the SDDC 1.5 eliminates the need for a header and soldering during the manufacturing process, saving money.   Using a push-in spring connection allows wires to be terminated to the connector.  It has also been designed with solid, stranded wires that include a ferrule which can be pushed into the terminal block while the spring clamp stays closed.  Removing the wires is simple by pressing the orange spring lever with a regular screwdriver.  It has a range of 3.5-mm centerline and works with 24 to 16 AWG wires, can handle currents up to 8 A at 300 V UL, and provides the push-in spring connection.  Its double row design is the latest in SKEDD Technology that uses a gas-tight connection.

The SDDC 1.5 connection system’s contact zone consists of two flexible parts that allow contacts to be easily adjusted with the use of plated through-holes on the printed circuit board.  The good news for manufacturer’s is that the design is so easy, it will not add to the cost of manufacturing, in fact, it can save on the production costs.  When inserted there is enough force that will create a gas-tight connection, requiring nothing special for the PCB.  The connection stability of the board is achieved by locking pins that expand with the push of the orange locking tabs.  It can potentially be used in building automation, HVAC systems, elevators and escalators, and white goods.

Also Read: View on PCB Design and Implementation today and in the future

Features include;

  • Allows you to save time during wire termination with its push-in connection
  • There is no need for a plug and header combination with its direct plug-in onto the PCB
  • Cost effective, only one component is necessary
  • Free positioning
  • Secure locking
  • Up to 25 mating and unmating cycles, for easy replacement
  • Intuitive use through color coded actuation lever
  • Quick and convenient testing using integrated test option

The SDDC 1.5 connection system is the newest high-density direct connection for printed circuit boards, that reduces manufacturing costs while allowing free positioning on the printed circuit board.  This is good news for the early adopters of this connection system, the implementation process does not require additional parts, the opposite is true, it only requires one component, does not require soldering and can be manufactured without using any tools.  Adding the integrated test option is simply another reason for considering the use of this connection system when necessary.

Also Read: Why it is Necessary to Control Humidity in PCB Assemblies

There is no doubt that the printed circuit board is the most important aspect of any technological project.  Meeting the industries demand for smaller, more effective, devices will continue to be a part of the PCB manufacturer’s responsibility.  The SDDC 1.5 connection system is an example of the latest in technological advances that we continue benefit from.  We look forward to the next advancement in PCB manufacturing!

 

 

References

Thomasnet.com

Phoenix Contact

bga

Essential Steps To Know About BGA

Written by Admin on . Posted in PCB, PCB Assembly and component, PCB Design, PCB Manufacturing

But although these 3d printed structures are cheap and easy to implement they can lack efficiency. They can be made complex, but for the moment complex 3d printed PCBs are difficult to produce in large volumes. Essential Steps to Know about BGA

When working with PCBs there can be many terms and acronyms that are confusing, and one such term is BGA. BGA, or Ball Grid Array, is a small package on a printed circuit board that is used to mount or hold microprocessors, completing integrated circuits. This article will provide 4 easy steps to get used to and understand BGAs.

Step 1: Benefits of using BGA

There are several different systems in place in order to mount devices in an integrated circuit. One of the earliest is the PGA, or Pin Grid Array, which had many pins to connect the circuit as opposed to pads, which the BGA system has. Although the PGA worked for several years, as technology advanced the pins were more and more compacted together and were not as efficient as BGA, which uses pads that conform to the circuit through solder, which is heated and then melted onto the board. BGA is also efficient when it comes to overheating, as it is able to release heat extremely well preventing the temperature of the circuit rising. This is due to lower thermal resistance of the mounting package. BGAs, because they are so close to the printed circuit board they reside on, have better electrical performance.

Step 2: Setbacks of the BGA

As with every piece of technology, there are some unfortunate disadvantages that the BGA has which you must understand if you are working with them. Luckily, the cons are not many, nor will they affect the circuit: it is still your job to prevent any problems as a result of these drawbacks. To begin with, BGAs are less flexible than previous iterations of grid arrays, meaning that bending or breakage may occur in a non-stabilized environment. Similarly, if you have a BGA under extreme conditions, such as extreme heat or extreme pressure, the solder on the BGA can fail to connect the components of the package. If you keep your BGAs in a stable system when manufacturing or working with them, then most of these problems will not affect you.
Step 3: Inspection

BGAs can be hard to inspect for issues when a circuit is no longer working, sometimes requiring X-ray inspection or a CT scanning machine to determine the cause of the problem with the circuit. Due to this, make sure you have the necessary equipment to work on the BGAs, and if you cannot afford to visually scan it, electrical techniques can also be useful, and physically inspecting the BGA is a cheap but dangerous method that can be used as well.
Step 4: Knowing the terminology

Although you are by now familiar with “BGA”, there are multiple other kinds of ball grid arrays that sound but are definitely not similar to BGAs, such as “CABGA”, which stands for Chip Array Ball Grid Array, and “MBGA”, which stands for Micro Ball Grid Array. A full list of variants on the BGA line of equipment can be found online, and we recommend that you check it out to fully familiarize yourself with all types of grid arrays.